Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Braz. dent. sci ; 22(4): 520-527, 2019. ilus
Article in English | LILACS, BBO | ID: biblio-1024654

ABSTRACT

Objective: Despite the increase of all-ceramic prosthesis in dental practice there is no evidence of the possibility of welding these structures if necessary. The objective of this study was to use CO2 laser (λ = 10.6 µm) as a welding agent to fuse dental polycrystalline alumina ceramic. Methods: Ceramic blocks of pre-sintered alumina were sectioned into 20 bars (10.0 x 1.5 x 1.5 mm) and sintered to the final cross section dimension of 1.2 x 1.2mm. The bars were adapted to an LHPG (Laser Heated Pedestal Growth) system device where the bars could be fixed in pairs and have their ends irradiated with CO2 laser to fusion. The ring-shaped laser beam (300 µm thickness) was directed with the aid of mirrors to reach samples' ends. The laser was continuously applied (40 W nominal power, 5 seconds). After welding, the samples were analyzed in stereomicroscope and SEM. A diffraction analysis was carried out with one sample. Results: CO2 laser was able to fuse the ceramic bars, but some of them showed some shape distortion in the fusion zone. The aspect of the fused alumina differed in color and translucency from the original sintered material. SEM evidenced the presence of porosity and voids in the center of the fusion zone. X-ray diffraction pointed to a reduction in crystallite size by two to four times in the welded region of samples. Conclusions: This study points to CO2 laser as a possible welding agent to polycrystalline alumina dental ceramic. Porosity observed in the molten zone gives cause for concern regarding weld resistance. (AU)


Objetivo: Apesar do aumento no número de próteses totalmente cerâmicas na prática clínica, não há evidência da possibilidade de se soldar essas estruturas se necessário. Este estudo testou o laser de CO2 (λ=10.6 µm) como um agente de solda para estruturas cerâmicas de alumina policristalina. Métodos: Blocos cerâmicos de alumina pré-sinterizada foram seccionados na forma de barras (10,0 x 1,5 x 1,5 mm) e sinterizados na dimensão final de 1,2 x 1,2 mm. As barras foram adaptadas a um sistema de crescimento de fibras cerâmicas (LHPG ­ Laser Heated Pedestal Growth) onde as barras foram fixadas em pares e tiveram suas extremidades irradiadas com laser de CO2 até a sua fusão. O feixe de laser foi direcionado com a ajuda de espelhos para atingir as extremidades das barras. O laser foi aplicado de forma contínua (40 W de potência nominal, 5 segundos). Depois da solda, os espécimes foram analisados em estereomicroscopia e MEV. Teste de difração foi conduzido com um espécime. Resutados: O laser de CO2 foi capaz de fundir as barras cerâmicas, mas algumas delas mostraram uma distorção da forma na zona de fusão. O aspecto da alumina soldada diferiu em cor e translucidez do material original. O MEV evidenciou a presença de porosidade no centro da zona de fusão. A difração por raio-x apontou para uma redução no tamanho dos cristalitos de duas a quatro vezes na região da solda. Conclusões: Esse estudo mostrou ser possível usar o laser de CO2 como um agente de solda para uma cerâmica policristalina de alumina. A porosidade observada na zona de fusão traz preocupação quanto à resistência da solda. (AU)


Subject(s)
Dental Materials , Lasers, Gas , Aluminum Oxide
2.
J. appl. oral sci ; 25(6): 700-707, Nov.-Dec. 2017. tab, graf
Article in English | LILACS, BBO | ID: biblio-893664

ABSTRACT

Abstract Due to increasing of aesthetic demand, ceramic crowns are widely used in different situations. However, to obtain long-term prognosis of restorations, a good conversion of resin cement is necessary. Objective: To evaluate the degree of conversion (DC) of one light-cure and two dual-cure resin cements under a simulated clinical cementation of ceramic crowns. Material and Methods: Prepared teeth were randomly split according to the ceramic's material, resin cement and curing protocol. The crowns were cemented as per manufacturer's directions and photoactivated either from occlusal suface only for 60 s; or from the buccal, occlusal and lingual surfaces, with an exposure time of 20 s on each aspect. After cementation, the specimens were stored in deionized water at 37°C for 7 days. Specimens were transversally sectioned from occlusal to cervical surfaces and the DC was determined along the cement line with three measurements taken and averaged from the buccal, lingual and approximal aspects using micro-Raman spectroscopy (Alpha 300R/WITec®). Data were analyzed by 3-way ANOVA and Tukey test at =5%. Results: Statistical analysis showed significant differences among cements, curing protocols and ceramic type (p<0.001). The curing protocol 3x20 resulted in higher DC for all tested conditions; lower DC was observed for Zr ceramic crowns; Duolink resin cement culminated in higher DC regardless ceramic composition and curing protocol. Conclusion: The DC of resin cement layers was dependent on the curing protocol and type of ceramic.


Subject(s)
Humans , Resin Cements/chemistry , Dental Cements/chemistry , Dental Porcelain/chemistry , Esthetics, Dental , Curing Lights, Dental , Surface Properties , Materials Testing
3.
Braz. dent. sci ; 16(1): 46-52, 2013. ilus, tab, graf
Article in English | LILACS, BBO | ID: lil-698277

ABSTRACT

Objective: This study investigated CO2 laser sintering of dental porcelain as an alternative to a conventional furnace by means of porosity, density, fracture toughness and microhardness tests. Methods: Two commercial veneering porcelains were chosen for this study: VM7 and VM9 (VITA Zahnfabrik). 25 porcelain green discs (4.1 mm dia. x 2.4 mm) of each commercial brand were confectioned and divided into 5 groups: a control group (oven-glazed specimens) and 4 groups of specimens sintered by continuous CO2 laser (Coherent, USA – 35 W e λ= 10.6 μm) with different fluences: 6000, 6900, 12000 and 13800 J/cm2. After sintering, the discs had one of their surfaces mirror polished until the final dimension of 3.5 mm x 2.0 mm was achieved. The amount of superficial pores (%) was assessed by the Image J software through images obtained from an optical microscope (Shimadzu - 100x). Apparent density was measured by the Archimedean’s method. Microhardness and fracture toughness (Indentation Fracture - IF) were determined with a Vickers indenter (Shimadzu). Results: Porosity ranged between 4.0 to 5.9% for the irradiated specimens; the control group had 6.0 and 4.7% of porosity for porcelain VM7 and VM9, respectively. The density of the VM7 porcelain irradiated in 13800 J/cm2 fluence was significantly higher than the control group. The microhardness and fracture toughness of the irradiated specimens were similar to the control. The indentation marks of some irradiated groups were not possible to achieve because the surface cracked during the test. Conclusions: Porcelain sintered with CO2 laser in studied fluences produced a material with superficial porosity similar to that obtained in a conventional oven. Depending on the commercial brand and/or the laser fluence, the irradiated specimens presented a density, fracture toughness and microhardness results that differed from the control group.


Objetivo: Este estudo testou o laser de CO2 como um agente de sinterização de porcelanas dentárias e o comparou ao forno convencional por meio das seguintes caracterizações: porosidade, densidade, tenacidade à fratura e microdureza. Materiais e métodos: Duas porcelanas comerciais foram escolhidas para o estudo: VM7 e VM9 (VITA Zahnfabrik). 25 discos (4,1 mm dia. x 2,4 mm) de cada porcelana foram confeccionados e divididos em 5 grupos: 1 grupo controle (espécimes sinterizados no forno) e 4 grupos de espécimes sinterizados pelo laser de CO2 de forma contínua (Coherent, USA – 35 W e λ= 10,6 μm) em diferentes fluências: 6000, 6900, 12000 e 13800 J/cm2. Após a sinterização, os discos tiveram uma de suas faces polidas. A dimensão final dos espécimes foi de 3,5 x 2,0 mm. A contagem de poros superficiais (%) foi feita pelo programa Image J (domínio público) através de imagens obtidas em um microscópio óptico (Shimadzu - 100x). A densidade aparente foi medida por Arquimedes. A microdureza e a tenacidade à fratura (método IF - Indentation Fracture) foram determinadas por um indentador Vickers (Shimadzu). Resultados: A porosidade variou entre 4,0 e 5,9% para os espécimes irradiados; o grupo controle apresentou a porosidade de 6,0 e 4,7% para o grupo controle das porcelanas VM7 e VM9, respectivamente. A densidade da porcelana VM7 irradiada na fluência de 13800 J/cm2 foi significantemente maior do que a observada no grupo controle. A microdureza e a tenacidade à fratura dos espécimes irradiados foram similares ao grupo controle, porém em alguns grupos não foi possível se obter as marcas de indentação devido ao trincamento da superfície, o que inviabilizou o teste. Conclusões: A sinterização com o laser de CO2 produziu uma porcelana com porosidade superficial semelhante àquela obtida em forno convencional. Dependendo da marca comercial ou da fluência do laser, os resultados de densidade, tenacidade à fratura e microdureza diferiram dos do grupo controle


Subject(s)
Ceramics , Dental Materials , Lasers
SELECTION OF CITATIONS
SEARCH DETAIL